
Sparse Matrices Beyond Solvers - Graphs,
Biology, and Machine Learning (v2)

Aydın Buluç
Computational Research Division, LBNL
EECS Department, UC Berkeley

CS Summer Student Program
July 16, 2020

Sparse Matrices

“I observed that most of the
coefficients in our matrices were
zero; i.e., the nonzeros were ‘sparse’
in the matrix, and that typically the
triangular matrices associated with
the forward and back solution
provided by Gaussian elimination
would remain sparse if pivot
elements were chosen with care”

- Harry Markowitz, describing the 1950s
work on portfolio theory that won
the 1990 Nobel Prize for Economics

Sparse Matrices

Original: Ax = b (hard to solve directly)
Factored: LUx = b (solvable by direct substitution)

1
2

3

4

5

6

10

7

8

9

Original matrix A Factors L+U

1
2

3

4

5

6

10

7

8

9

Graphs in the language of matrices

• Sparse array representation => space efficient
• Sparse matrix-matrix multiplication => work efficient
• Three possible levels of parallelism: searches, vertices, edges
• Highly-parallel implementation for Betweenness Centrality*

*: A measure of influence in graphs, based on shortest paths

BAT

à

AT � B
6

1 2

3

4 7 5

Graph coarsening via sparse
matrix-matrix products

1 52 3 4 6
1

5

2
3
4

6

5

6

3

1 2

4

A1

A3
A2

1 1 0 00 0
0 0 1 10 0
0 0 0 01 1

1 1 0
1 0 1
0 1 0

1 1
1 1

0 0 1

A1

A2 A3

x x =
2

1
2 1

Aydin Buluç and John R. Gilbert. Parallel sparse matrix-matrix multiplication and indexing:
Implementation and experiments. SIAM Journal of Scientific Computing (SISC), 2012.

The GraphBLAS effort

• The GraphBLAS Forum: http://graphblas.org
• Graphs: Architectures, Programming, and Learning (GrAPL @IPDPS):
http://hpc.pnl.gov/grapl/

Abstract-- It is our view that the state of the art in constructing a large collection of
graph algorithms in terms of linear algebraic operations is mature enough to
support the emergence of a standard set of primitive building blocks. This paper is
a position paper defining the problem and announcing our intention to launch an
open effort to define this standard.

http://graphblas.org
http://hpc.pnl.gov/grapl/

SuiteSparse::GraphBLAS

• From Tim Davis (Texas A&M)
• First conforming implementation of C API
• Features [1]:

• 960 semirings built in; also user-defined semirings
• Fast incremental updates using non-blocking mode and “zombies”
• Several sparse data structures & polyalgorithms under the hood

• Already multithreaded [2]
• Performance on graph benchmarks (e.g. triangles, k-truss)

comparable to highly-tuned custom C code
• Included in Debian and Ubuntu Linux distributions
• Used as computational engine in commercial RedisGraph

product
[1] Davis, Timothy A. "Algorithm 1000: SuiteSparse: GraphBLAS: Graph Algorithms in the Language of
Sparse Linear Algebra." ACM Transactions on Mathematical Software (TOMS) 45.4 (2019): 44.
[2] Aznaveh, Mohsen, et al. "Parallel GraphBLAS with OpenMP." CSC20, SIAM Workshop on Combinatorial
Scientific Computing. SIAM. 2020.

GraphBLAS C API Spec (http://graphblas.org)

• Goal: A crucial piece of the GraphBLAS effort is to translate the mathematical
specification to an actual Application Programming Interface (API) that
i. is faithful to the mathematics as much as possible, and
ii. enables efficient implementations on modern hardware.

• Impact: All graph and machine learning algorithms that can be expressed in the
language of linear algebra

• Innovation: Function signatures (e.g. mxm, vxm, assign, extract), parallelism constructs
(blocking v. non-blocking), fundamental objects (masks, matrices, vectors, descriptors), a
hierarchy of algebras (functions, monoids, and semiring)

A.Buluç, T. Mattson, S. McMillan, J. Moreira, C. Yang. “The GraphBLAS C API Specification”, version 1.3.0

GrB_info GrB_mxm(GrB_Matrix *C, // destination

const GrB_Matrix Mask,

const GrB_BinaryOp accum,

const GrB_Semiring op,

const GrB_Matrix A,

const GrB_Matrix B

[, const Descriptor desc]);

C(¬M) ⊕= AT ⊕.⊗ BT

http://graphblas.org/

Examples of semirings in graph algorithms

Real field: (R, +, x) Classical numerical linear algebra

Boolean algebra: ({0 1}, |, &) Graph connectivity

Tropical semiring: (R U {∞}, min, +) Shortest paths

(S, select, select) Select subgraph, or contract nodes to
form quotient graph

(edge/vertex attributes, vertex data
aggregation, edge data processing)

Schema for user-specified
computation at vertices and edges

(R, max, +) Graph matching &network alignment

(R, min, times) Maximal independent set

• Shortened semiring notation: (Set, Add, Multiply). Both identities omitted.
• Add: Traverses edges, Multiply: Combines edges/paths at a vertex
• Neither add nor multiply needs to have an inverse.
• Both add and multiply are associative, multiply distributes over add

1
2

3

4 7

6

5

AT

1

7

71
from

to

Breadth-first search in
the language of matrices

1
2

3

4 7

6

5

XAT

1

7

71
from

to

ATX

à

1

1

1

1

1parents:

Particular semiring operations:
Multiply: select2nd
Add: minimum

0

Input sparsity

• What was the cost of that ATx in the previous slide?
• If x is dense, it is O(nnz(A)) = O(m) where m=#edges
• If x is sparse, it is

• Over all iterations of BFS, the cost sums up to O(nnz(A)),
because no xi appears twice in the input.

• Note that this is optimal for conventional (top-down) BFS
• Many people outside the community miss this observation

and mistakenly think SpMV based BFS is suboptimal by a
factor of the graph diameter.

X

i:xi 6=0

nnz(Ai:)

1
2

3

4 7

6

5

X

4

2

2

AT

1

7

71
from

to

ATX

à

2

4

4

2

24

Select vertex with
minimum label as parent

1

1parents:
4

2

2

0

1
2

3

4 7

6

5

X

3

AT

1

7

71
from

to

ATX

à
3

5

7

3

1

1parents:
4

2

2

5

3

0

• Masks avoid formation of
temporaries and can enable
automatic direction optimization

• These footballs are nonzeros that
are masked out by the parents array

XAT

1

7

71
from

to

ATX

à

6

1
2

3

4 7

6

5

GraphBLAST

• First “high-performance” GraphBLAS implementation on the GPU
• Optimized to take advantage of both input and output sparsity
• Automatic direction-optimization through the use of masks
• Competitive with fastest GPU (Gunrock) and CPU (Ligra) codes
• Outperforms multithreaded SuiteSparse::GraphBLAS

Design principles:
1. Exploit input sparsity => direction-optimization
2. Exploit output sparsity => masking
3. Proper load-balancing => key for GPU implementations

Extensively evaluated on (more implemented, google for github repo)
• Breadth-first-search (BFS)
• Single-source shortest-path (SSSP)
• PageRank (PR)
• Triangle counting (TC)

Yang, B., Owens, “GraphBLAST: A High-Performance Linear Algebra-based Graph Framework on the GPU”, arXiv

https://github.com/gunrock/graphblast

https://github.com/gunrock/graphblast

Kernel methods in Machine Learning
A kernel is
a function

that

Implicitly transforms raw data into high-
dimensional feature vectors via a feature

map; and then

Returns an inner product between the
feature vectors.

Must be positive-definite.

A kernel is
useful for

Factor out knowledge on data
representation from downstream

algorithms,
Exploit infinite dimensionality and

nonlinear feature spaces.

Kernels
are used

in

Support vector machine (SVM), Gaussian
process regression (GPR), Kernel

principal component analysis (kPCA), etc.

Figure source:
Russell & Norvig

750 Chapter 20. Statistical Learning Methods

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

x 2

x1

0
0.5

1
1.5

2x1
2 0.5

1
1.5

2
2.5

x2
2

-3
-2
-1
0
1
2
3

√2x1x2

(a) (b)

Figure 20.27 (a) A two-dimensional training with positive examples as black circles and
negative examples as white circles. The true decision boundary, x2

1 + x2
2 ≤ 1, is also shown.

(b) The same data after mapping into a three-dimensional input space (x2
1, x

2
2,
√

2x1x2). The
circular decision boundary in (a) becomes a linear decision boundary in three dimensions.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

x 22

x1
2

Figure 20.28 A close-up, projected onto the first two dimensions, of the optimal separator
shown in Figure 20.27(b). The separator is shown as a heavy line, with the closest points—the
support vectors—marked with circles. The margin is the separation between the positive
and negative examples.

φ(x1, x2) = (x1
2, x2

2, 2x1x2)
The circular decision boundary in 2D (a) becomes a linear boundary in 3D (b) using
the following transformation:

Marginalized Graph Kernels

Compare

Graph A

Graph B

0.60.4

0.30.2

0.5

Graph A

Graph B

0.9

0.9

0.5

0.3

0.4 0.6
0.7 0.2

Use edge weight to set
transition probability

𝑝 = 0.4

𝑝 = 0.6

𝑝 = 0.2

𝑝 = 0.3

𝑝 = 0.5

𝑝 = 0.4×0.9 = 0.36

𝑝 = 0.6×0.9 = 0.54

𝑝 = 0.2×0.5 = 0.10

𝑝 = 0.2×0.4 = 0.08

𝑝 = 0.3×0.3 = 0.09

𝑝 = 0.3×0.6 = 0.18

𝑝 = 0.5×0.7 = 0.35

𝑝 = 0.5×0.6 = 0.30

Sample paths

Length=1 Length=2

The inner product
between two graphs is
the statistical average
of the inner product of
simultaneous random
walk paths on the two
graphs.

The marginalized graph kernel
in linear algebra form represents
a modified graph Laplacian

Solving the Graph Kernel PSD system

Streaming Kronecker matrix-vector multiplication
• Regenerates the product linear system on the fly by streaming 8-by-8 tiles.
• Tiles staged in shared memory.
• Trade FLOPS for GB/s, but asymptotic arithmetic complexity stays the same.

Exploiting Sparsity

• Most discrete systems have natural sparsity (e.g. not all atoms are connected).
• 2-level sparsity exploitation:

i. Outer level: retain only non-empty tiles
ii. Inner level: use bitmap + compact storage format

• Packing into compact format: on CPU as a preprocessing step
• Unpacking for Streaming Kronxv: on GPU using bit magic + warp intrinsics
• Partition-based graph ordering reduces # non-empty tiles
☛ Cost easily amortized because we reorder each graph, not their product

E M P T Y
T I L E

D I S C A R D E D

K
H L R

E M Q
F O

I
N

A C G J P
B D S

A B C D E F G H I J K L M N O P Q R S

D E N S E S T O R A G E

0 0 0 0 1 0 0 0
0 0 0 1 1 0 0 1
0 0 1 0 1 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
1 1 1 1 0 1 0 0
1 1 0 0 0 0 0 1

B I T M A P 6 4 - b i t i n t e g e r n z m a s k

0b1000001000000100010010000010011101010010010011001100000011000000

0x0303324AE4122041

N O N - E M P T Y
T I L E

C O M P R E S S E D

Performance of the Graph Kernel

Yu-Hang Tang, Oguz Selvitopi, Doru Popovici, and Aydin Buluç. A high-throughput solver for marginalized
graph kernels on GPU. In Proceedings of the IPDPS, 2020.

GraKeL: Cython, multi-threading
GraphKernels: Python, no parallelization

Graph Neural Networks

Can be used to classify unlabeled nodes in graph

Want to map nodes to feature vectors

• Embed properties of graph, e.g. connectivity, in vectors per node

Graph Node vectors
𝑣2
𝑣3
𝑣4
𝑣5

Map each node
to a vector

Apply standard
ML to vectors

How do we compute these vectors? With a GNN

GNN Training

• Each node is initialized with a feature vector
– 𝐻2 has initial feature vector per node (𝑛 𝑥 𝑓)

• Each node aggregates vectors of its neighbors, applies a weight
• Each layer computes gradients

𝐴 ∈ 𝑛 𝑥 𝑛

𝐻> ∈ 𝑛 𝑥 𝑓>

𝐺> ∈ 𝑛 𝑥 𝑓>

for i = 1 … E
for l = 1 … L

Zl = AT * Hl-1 * Wl
Hl = σ (Zl)

...
for l = L-1 … 1

Gl = A * Gl+1 * (Wl+1)T ⊙ σ’(Zl)
dH/dW = (Hl-1)T * A * Gl

𝑊> ∈ 𝑓> B3 𝑥 𝑓>

• A is sparse and f << n, so the main workhorse is SpMM (sparse
matrix times tall-skinny dense matrix)

Communication avoidance in
GNN Training

Alok Tripathy, Katherine Yelick, Aydın Buluç. Reducing Communication in Graph Neural Network Training. arXiv

The Markov Cluster Algorithm (MCL)

26

The number of edges or higher-length paths between two arbitrary
nodes in a cluster is greater than the number of paths between
nodes from different clusters

Random walks on the graph will frequently remains within a cluster

The algorithm computes the probability of random walks through
the graph and removes lower probability terms to form clusters

Widely popular and successful algorithm for
discovering clusters (e.g. protein families) in
protein interaction and protein sequence
similarity networks

The Markov Cluster Algorithm (MCL)

27

Iteration 1 Iteration 2 Iteration 3Initial network

At each iteration:
Step 1 (Expansion): Squaring the matrix while

pruning (a) small entries, (b) denser columns
Naïve implementation: sparse matrix-matrix product (SpGEMM),
followed by column-wise top-K selection and column-wise pruning
Step 2 (Inflation) : taking powers entry-wise

A combined expansion and pruning step

x =
Prune

A A2 C = Prune(A2)

b

Ab

b b

q b: number of columns in the output constructed at once
– Smaller b: less parallelism, memory efficient (b=1 is equivalent

to sparse matrix-sparse vector multiplication used in MCL)
– Larger b: more parallelism, memory intensive

HipMCL: High-performance MCL

• MCL process is both computationally expensive and memory
hungry, limiting the sizes of networks that can be clustered

• HipMCL overcomes such limitation via sparse parallel algorithms.
• Up to 1000X times faster than original MCL with same accuracy.

A. Azad, G. Pavlopoulos, C. Ouzounis, N. Kyrpides, A. Buluç; HipMCL: a high-performance parallel
implementation of the Markov clustering algorithm for large-scale networks, Nucleic Acids Research, 2018

x =

𝐴344 𝐴354

𝐴444 𝐴454

𝐴544 𝐴554

𝐴334

𝐴434

𝐴534

A A (or Ab) A2

Process row

Pr
oc

es
s

co
lu

m
n

Process Gridp × p

HipMCL on large networks

30

Data Proteins Edges #Clusters HipMCL
time platform

Isolate-1 47M 7 B 1.6M 1 hr 1024 nodes
Edison

Isolate-2 69M 12 B 3.4M 1.66 hr 1024 nodes
Edison

Isolate-3 70M 68 B 2.9M 2.41 hr 2048 nodes
Cori KNL

MetaClust50 282M 37B 41.5M 3.23 hr 2048 nodes
Cori KNL

MCL can not cluster these networks

HipMCL on Supercomputers with accelerators

31

• Recent top supercomputers are
all accelerated (e.g. with GPUs)

• This is what a ORNL Summit
node looks like

• There are 4608 such nodes in
the system

• Challenges: (1) Utilizing all GPUs,
(2) hiding the communication

Pipelined Sparse SUMMA
Joint CPU-GPU distributed memory
expansion of MCL algorithm

HipMCL on Supercomputers with accelerators

32

Other changes to HipMCL for the CPU-GPU workflow:
• Randomized memory estimation algorithm avoids symbolic phase
• New eager binary merging reduces memory footprint
• Integration of a much faster hash-based CPU SpGEMM algorithm

Bi
na

ry
 m

er
ge

Broadcasts

Symbolic SpGEMM

Pipelined
Sparse SUMMA

For each phase

Broadcasts

Numeric SpGEMM

Partial result
accumulation

Multi-way merge

Pruning

Inflation

Probabilistic memory
usage estimation

Offload to GPU

O. Selvitopi, M.T. Hussain, A. Azad, and A. Buluç. Optimizing high performance Markov clustering for pre-
exascale architectures. IPDPS, 2020

SpGEMM for DNA read overlapping

• Long reads from PacBio and Oxford Nanopore have the
potential to revolutionize de-novo assembly

• Overlap-Consensus-Layout paradigm is more suitable than
de Bruijn graph paradigm.

• Overlapping is the most computationally expensive step.

Layout identified

Consensus sequence

Overlap-Layout-Consensus

Reads
10K bases

Overlaps identified

SpGEMM for DNA read overlapping

• We need to quickly determine pairs of reads that are *likely to*
overlap, without resorting to O(n2) comparisons

• If two reads do not share any subsequence of length k (aka a k-
mer) for a reasonably short k, then they are unlikely to overlap

SpGEMM for DNA read overlapping

ri = ith read
kj = jth reliable k-mer
A(i,j) = presence of jth reliable k-mer in
ith read, plus its position

k5 k6

r1
r2

r3
r4

r5
r6

A matrix
k1 k2 k3 k4

• Suppose you have counted k-
mers and only retained
reliable k-mers

• Now you can generate this
read-by-kmer sparse matrix A

• These are all linear time
computations so far

Giulia Guidi, Marquita Ellis, Daniel Rokhsar, Kathy Yelick, Aydın Buluç, BELLA: Berkeley Efficient
Long-read to Long-Read Overlapper and Aligner, Biorxiv, 2018

SpGEMM for DNA read overlapping

r1
r2

r3
r4

r5
r6

r1 r2 r3 r4 r5 r6

AAT(i,j) = # shared k-mers
between reads i and j, plus
their positions in the reads

Read-by-read overlap matrix: AAT

Use any fast SpGEMM algorithm, as long as it runs on arbitrary semirings

SpGEMM for many-to-many
protein alignment

• Idea similar to BELLA, but removing
the exact match restriction

• For homology detection, need to
catch weaker signal (~30% ANI)

• K-mers with substitutes may be more
valuable than exact matches!

1 substitute 2 substitutes

SpGEMM for many-to-many
protein alignment

Introduce new sparse matrix S
• Contains substitution

information
• Each entry

- Substitution cost
Exact k-mers à C=AAT

Substitute k-mers à C=ASAT

New semiring

Oguz Selvitopi, Saliya Ekanayake, Giulia Guidi, Georgios Pavlopoulos, Ariful Azad, and Aydın Buluç.
Distributed Many-to-Many Protein Sequence Alignment Using Sparse Matrices. SC’20.

Acknowledgments

Ariful Azad, Tim Davis, Saliya Ekanayake, Marquita
Ellis, John Gilbert, Giulia Guidi, Jeremy Kepner, Nikos
Krypides, Tim Mattson, Scott McMillan, Jose Moreira,
John Owens, Georgios Pavlopoulos, Dan Rokhsar,
Oguz Selvitopi, Yu-Hang Tang, Alok Tripathy, Carl
Yang, Kathy Yelick.

• My Research Team: http://passion.lbl.gov
• Our (new) Youtube Channel: http://shorturl.at/lpFRY
• The GraphBLAS Forum: http://graphblas.org

http://passion.lbl.gov/
http://shorturl.at/lpFRY
http://graphblas.org

